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Symmetry-breaking instability and strongly peaked periodic clustering states
in a driven granular gas
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An ensemble of inelastically colliding grains driven by a horizontally vibrating wall in two dimensions
exhibits clustering. Working in the limit of nearly elastic collisions and employing granular hydrodynamics, we
predict, by a marginal stability analysis, a spontaneous symmetry breaking of the laterally uniform clustering
state. Two-dimensional steady-state solutions found numerically describe laterally periodic clustering states.
Well within the instability region the density of these states is strongly peaked, with most of the granulate
located in ‘‘density islands.’’ Time-dependent granular hydrodynamic simulations show that strongly peaked
states can develop from small-amplitude single-mode density perturbations.
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I. INTRODUCTION

Granular flows exhibit fascinating nonequilibrium ph
nomena and continue to attract much interest@1,2#. We will
concentrate here on the striking tendency of granu
‘‘gases’’ ~rapid granular flows! to form dense clusters@3#.
Clustering results from energy losses by inelastic collisio
and it is a manifestation of thermal condensation instabi
also known in other media@4#. Since the discovery of the
clustering instability, the validity of granular hydrodynami
@5# has been under scrutiny. In a freely cooling granular g
all grains eventually come to rest, making a hydrodynam
~and even kinetic! description problematic. In adriven
granular gas hydrodynamics can be conveniently tested
its steady states. The simplest system of this kind is a s
monolayer of grains in two dimensions, driven by a vibrati
sidewall at zero gravity. This and related ‘‘test bed’’ syste
have been investigated by molecular dynamic~MD! simula-
tions @6–8# and in experiment@9#. For sufficiently high av-
erage densities a clustering state was observed in these w
away from the driving wall. This clustering state was almo
uniform in the lateral direction in rectangular boxes@6,7,9#,
and in the azimuthal direction in a circular box@8#. We will
call this laterally~or azimuthally! uniform clustering state an
‘‘extended clustering state’’~ECS!. The basic physics of the
ECS is simple. Because of the inelastic collisions the gra
lar temperature decreases with increasing distance from
driving wall. To maintain the momentum balance, the gra
lar density should increase with this distance, reaching
maximum at the opposite~‘‘elastic’’ ! wall. When the density
contrast is large enough, the enhanced density region is
served as the ECS.

Comparisons of the steady-state density profiles obta
in MD simulations of this class of problems with those pr
dicted by granular hydrodynamics showed that hydrodyna
ics is valid only in the limit of nearly elastic collision
@6–8,10#. This limit has not been fully explored, and it
nontrivial. To demonstrate it, we start with a marginal stab
ity analysis of this simplest granular system. This analy
reveals a symmetry-breaking instability of the ECS, and f
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mation of laterally periodic clustering states. Then we inv
tigate nonlinear steady states of this system numerically.
find that, well within the instability region, the density of th
laterally periodic clustering states is strongly peaked. Fina
we report a series of time-dependent granular hydrodyna
simulations that show that strongly peaked clustering sta
develop from small-amplitude single-mode density pertur
tions.

II. MODEL PROBLEM AND LATERALLY UNIFORM
CLUSTERING STATE

Consider a big ensemble of identical spherical grains
diameterd and massmg51 rolling on a smooth horizonta
surface of a rectangular box with dimensionsLx3Ly . The
limit of Ly→` corresponds to an infinite strip. This impo
tant limit will also be considered. The number density
grains isn(x,y). For a submonolayer coverage the ma
mum value of n corresponds to the~hexagonal! close-
packing valuenc52/()d2). Three of the walls are immo
bile, and grain collisions with them are assumed elastic. T
fourth wall ~located atx5Lx! supplies energy to the granu
late. We will consider two different models of energy supp
~see below!. The energy is being lost through inelastic har
core grain collisions. We neglect the grain rotation and
rametrize the inelasticity of grain collisions by a consta
normal restitution coefficientr.

We assume astrong inequality 12r 2!1, which makes a
hydrodynamic description valid@6–8#. Therefore, steady
states of the system can be described by the equation
momentum and energy balance:

p5const, “•~k“T!5I , ~1!

wherep is the granular pressure,k is the thermal conductiv-
ity, I is the rate of energy losses by collisions, andT is the
granular temperature. To proceed, one needs an equatio
statep5p(n,T) and relations fork andI in terms ofn andT.
In the low-density limitn!nc , these relations can be de
rived from the Boltzmann equation@5#. The high-density
limit nc2n!nc was considered by Grossmanet al. @6#.
©2002 The American Physical Society02-1
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They also suggested convenient interpolations between
low- and high-density limits, and verified them by a detail
comparison with MD simulations. We will adopt this prac
cal approach~see, however, Sec. IV!. In our notation

p5nT
nc1n

nc2n
, ~2!

k5(m/ l )n(a l 1d)2T1/2, and I 5(m/g l )(12r 2)nT3/2. Here
l is the mean free path of the grains,

l 5
1

A8nd

nc2n

nc2an
, ~3!

a512(3/8)1/2, anda and g are numerical factors of orde
unity. Grossmanet al. @6# found thata.1.15 andg.2.26.
The value ofm, another numerical factor of order unity,
irrelevant in the steady-state problem.

The boundary conditions include the no-flux conditio
“nT50 at the ‘‘elastic’’ walls x50, y50, andy5Ly ~“n
means the component of the gradient normal to the wa!.
Previously, the ‘‘thermal’’ wall conditionT5const was used
at x5Lx @6–8,12#. We will use a different boundary cond
tion, to simulate the vibrating wall more directly. Our ma
results, however, will be shown to hold for the thermal w
as well. When the system is infinite in the lateral directio
Ly5`, only two boundary conditions remain, atx50 and
x5Lx .

The problem of computing the energy fluxq from a vi-
brating wall into granulate has been addressed in sev
works @13#. Let the wall oscillate sinusoidally:x5Lx
1A cosvt. For small area fractions the granulate near t
wall is in the dilute limit. We assumeA! l , so the vibrating
wall does not generate any collective motions in the gra
late. Grain collisions with the vibrating wall are assum
elastic. Also,v is much larger than the rate of granular co
lisions near the vibrating wall,T1/2/ l , so there are no corre
lations between two successive grain collisions with the w
The limit Av!T1/2 was considered by Kumaran@14# for a
nonzero gravity. We will work in this regime. Direct calcu
lations analogous to that of Kumaran@14#, but for zero grav-
ity, yield q5(2/p)1/2A2v2nT1/2 In the language of hydrody
namics,q is the heat flux at the wall:

k ]T/]x5q at x5Lx . ~4!

For this hydrodynamic relation to be valid,l calculated near
the wall should be much smaller than the characteri
length scale of the gas phase, which, for typical parame
we are interested in~see below!, is close to min(Lx ,Ly). Fi-
nally,

1

LxLy
E

0

LxE
0

Ly
n~x,y!dx dy5^n&5const

is a normalization condition, wherên& is the average grain
density.

Using Eq.~2!, we eliminateT in favor of n andp. In its
turn, p can be eliminated by integrating Eq.~1! over the
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whole box and using the Gauss theorem and Eq.~4!. It is
convenient to write the governing equations in a scaled fo
Introduce scaled coordinatesr /Lx→r so that the scaled box
dimensions become 13D, where D5Ly /Lx is the aspect
ratio of the box. Introducing the~scaled! inverse granular
densityz(x,y)5nc /n(x,y), we obtain

“•@F~z!“z#5LQ~z!. ~5!

The boundary conditions are

“nz50 at x50, y50, and y5D, ~6!

and

S G~z!
]z

]xD U
x51

5L
E

0

1E
0

D

Qdx dy

E
0

D

H@z~1,y!#dy

. ~7!

The normalization condition becomes

D21E
0

1E
0

D

z21dx dy5 f , ~8!

while the functionsF, G, H, andQ are the following:

F~z!5
~z212z21!@az~z21!1A32/3~z2a!#2

~z2a!~z21!1/2z3/2~z11!5/2 , ~9!

G~z!5
~z212z21!@az~z21!1A32/3~z2a!#2

z~z2a!~z21!~z11!2 , ~10!

H~z!5
F~z!

G~z!
, and Q~z!5

~z2a!~z21!1/2

~z11!3/2z1/2 . ~11!

Finally, L5(32/3g)(Lx /d)2(12r 2). The other two govern-
ing parameters are the grain area fractionf 5^n&/nc andD.
For an infinite stripD5`, and one is left with only two
governing parameters,L and f. Notice that the steady-stat
densitydistributions are independent ofA andv ~in contrast
to problems with nonzero gravity, where the gravity acc
eration, combined with the maximum wall accelerationAv2,
forms an additional governing parameter!.

Equations ~5!–~8! make a closed set. Their one
dimensional~1D! ~y-independent! solution Z5Z(x) is de-
scribed by the equations

~FZ8!85LQ, Z8ux5050, and E
0

1

Z21dx5 f , ~12!

where the primes stand for thex derivatives. Equation~7! is
now satisfied automatically. Equations~12! coincide with
those obtained by Grossmanet al. @6# for a thermalwall at
x51. Therefore, the density profiles of the 1D states co
cide for the different types of driving. Equations~12! can be
solved analytically in the high- and low-density limits@6#.
2-2
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These solutions clearly show that the criterion@10# for the
validity of hydrodynamics is equivalent to a strong inequ
ity 12r 2!1.

Most interesting among the 1D states is the state wit
dense cluster~an ECS! located at the elastic wallx50, and a
low-density region elsewhere. In this case Eqs.~12! should
be solved numerically. Examples are presented in Ref.@6#,
and a similar clustering state~CS! has been observed exper
mentally@9#. The main objective of this work is to show tha
this laterally uniform state can give way, via a spontane
symmetry breaking, to CSs periodic in the lateral~y! direc-
tion. First, a marginal stability analysis will show loss
stability of the ECS in a certain region of parameters. Th
solving Eqs. ~5!–~8! numerically, we will find that, well
within the instability region, the density of the periodic CS
becomes strongly peaked in the lateral direction. Fina
time-dependent granular hydrodynamic simulations w
show that strongly peaked CSs are dynamically stable
can develop from small-amplitude single-mode density p
turbations in boxes of a finite size.

III. SYMMETRY-BREAKING INSTABILITY AND
STRONGLY PEAKED PERIODIC STATES

We start with a marginal stability analysis of the EC
Linearizing Eqs.~5!–~8! around the ECSz5Z(x) and look-
ing for a small correction in the form ofck(x)cos(ky), where
k is the lateral wave number, we obtain

Ff92~LQZ1k2F !f50. ~13!

Heref5Fck and the indexZ means thez derivative evalu-
ated atz5Z(x). The boundary conditions are

f8ux5050, @FGf81Z8~FGZ2GFZ!f#ux5150.
~14!

The functionsF and G that enter Eqs.~13! and ~14! are
evaluated atz5Z(x).

For fixed values ofL andf, Eqs.~13! and~14! represent a
linear eigenvalue problem for the lateral wave numberk. Let
us first consider an infinite stripD→`, when these eigen
valuesk5k* are continuous. Figure 1 shows, for differe

FIG. 1. Marginal stability curvesk* ( f ) for different values of
L. The values ofk* are divided byL1/2. For a fixedL the ECS is
unstable below the corresponding marginal stability curve.
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values ofL, the marginal stability curvesk* 5k* ( f ) found
numerically. For a fixedL the ECS is unstable for anyk
,k* ( f ), that is, below the corresponding marginal stabil
curve. Interestingly, thek* ( f ) curves have compact suppor
the ECS remains linearly stable forany k beyond a finite
interval of the area functionsf 1(L), f , f 2(L) such thatf 1
.0 and f 2,1. As L increases, the instability interva
( f 1 , f 2) shrinks, while the maximum value ofk* ( f ) in-
creases. This increase can be approximately describe
k
*
max.(p/140)L1/2. We used this approximate scaling in Fi

1 to show, on a single graph, the marginal stability curves
a broad range ofL.

When f !min(1,L21/2), the asymptotics ofk* ( f ) can be
found analytically. In this case the whole granulate is in t
dilute limit, z@1 ~still, it is necessary to account for th
subleading terms!. In addition, Z(1)2Z(0)!Z(0) in this
case, so Taylor expansion ofZ(x) andc(x) up tox4 suffices.
After some algebra, Eqs.~12!–~14! yield

K* 5FL2f 4

3a4 2
~11a!Lf 3

a2 G1/2

. ~15!

It follows from Eq. ~15! that f 1(L)53a2(11a)L21. Our
numerical results shown in Fig. 1 are in excellent agreem
with these predictions.

Therefore, marginal stability analysis predicts
symmetry-breaking instability of the ECS. For the infini
strip, the instability occurs on a finite interval of the wav
numbers. In a system with finite lateral dimension the late
wave numberk is discrete because of the boundary con
tions: k5pm/D, wherem51,2,... . Let us fixL and f and
find the critical values of the aspect ratioDm , such that at
D.Dm the ECS loses stability with respect to themth mode.
Obviously,Dm(L, f )5mD1(L, f ). For the modem51 ~this
mode can also be calledl/2, that is, one-half of the wave
length across the system in the lateral direction! the critical
aspect ratioD1 is the lowest. Figure 2 shows, for differen
values of L, the critical aspect ratiosD5D1( f ). The
symmetry-breaking instability develops in the parameter
gion above these curves~within instability tongues!. Note

FIG. 2. Critical values of the aspect ratioD1( f ), needed for the
instability to develop, for different values ofL. The values ofD1

are multiplied byL1/2.
2-3
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that these curves can be obtained from the curves show
Fig. 1 by simply calculatingD1( f )5p/k* ( f ) for the given
L.

For sufficiently largeL, D1
(min) becomes less than 1, s

one does not need a long strip to observe the symme
breaking instability. Figure 3 shows the instability tongu
m51 and m52 for L553104. For higherm we obtain
modes 3l/2, 2l, 5l/2,..., which fit in boxes with increasingly
larger aspect ratios,D.mD1 .

We also found a similar symmetry-breaking instabil
when the wallx51 ~in scaled units! is ‘‘thermal.’’ Solving
the corresponding eigenvalue problem@where the second
boundary condition in Eq.~14! is replaced byf(x51)50#,
we obtained marginal stability curves similar to those for
vibrating wall, but more narrow. As an example, the dott
line in Fig. 3 shows the instability tonguem51 in the case
of a ‘‘thermal’’ wall for L553104. Noticeable is the coin-
cidence of them51 curves at intermediatef for the two
types of driving. This coincidence results from a strong
calization of the eigenfunctionf(x) near the elastic wallx
50 at largeL and intermediatef. The exact form of the
boundary condition atx51 becomes irrelevant in this re
gime. Finally, for the thermal wall the ECS is stable for a
D if f !min(1,L21/2), in contrast to the vibrating wall.

In the rest of the paper we will deal with the vibratin
wall. Within the instability region the marginal stabilit
analysis is no longer valid. In addition, any linear analy
can miss a subcritical bifurcation outside the instability
gion. Therefore, we directly solved the two-dimension
steady-state equations~5!–~8! numerically~using a nonlinear
Poisson solver and Newton’s iterations!, exploring some
parts of the parameter plane (f ,D) of Fig. 3. We worked with
systems of finite lateral dimensions. The results of these
culations, however, are generalizable to an infinite strip.
deed, the nonlinear Poisson equation~5! has a rich family of
solutions periodic iny. Therefore, a numerical solution ob
tained for 0,y,D, and satisfying the no-flux boundar
conditions aty50 andy5D, represents a natural ‘‘building

FIG. 3. Critical values of the aspect ratiosDm( f ) for m51
~solid line! and 2 ~dashed line! and L553104. Two-dimensional
density profiles corresponding to points 1, 2, 3, and 4 are sh
below in Fig. 4. The dotted line shows the critical valueD1( f ) for
the ‘‘thermal wall.’’
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block’’ of the corresponding nonlinear periodic solution~see
below!. Note that the weakly modulated~cosine-like! solu-
tions, considered in our marginal stability analysis, repres
a small-amplitude limit of these nonlinear periodic solution

Figure 4 shows two-dimensional density profiles of fo
typical steady states withm51 and 2. Strongly peaked
~highly nonlinear! l/2 andl states are evident in Figs. 4~a!
and 4~b!. Figure 5 shows the density profile along the elas
wall x50, corresponding to Fig. 4~b!. Strong localization of
the granulate in the lateral direction is clearly seen. T
maximum/minimum density ratio along the elastic wall
about 21 in this example.

A mirror reflection of Fig. 4~a! with respect toy50
makesD52 and produces al state similar to that shown in
Fig. 4~b!. A nonlinear periodic solution for an infinite strip i
obtained simply by extending Fig. 4~b! periodically in they
direction. This strongly peaked periodic solution looks li
an infinite chain of ‘‘islands,’’ or strongly localized CSs. Ob
viously, cluster chains with different periods can fit in th
infinite strip ~actually, even in finite boxes with large enoug
aspect ratios!. Therefore, an interesting nonlinear selecti
problem arises, as in other pattern-forming systems@11#. One
can expect that pattern selection will occur via competit
between clusters for material and their coarsening.

n

FIG. 4. Steady-state density profiles~gray scale, separate fo
each picture! corresponding to points 1~a!, 2~b!, 3~c!, and 4~d! of
Fig. 3. The maximum~minimum! density at the wallx50 is 0.76
~0.036! ~a! and ~b!, 0.48 ~0.21! ~c!, and 0.54~0.10! ~d!. The gas
density at the vibrating wallx51 is close to 431023 for all pro-
files.

FIG. 5. Density profile along the elastic wallx50, correspond-
ing to Fig. 4~b!.
2-4
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SYMMETRY-BREAKING INSTABILITY AND STRONGLY . . . PHYSICAL REVIEW E 65 021302
In general, we found that, when crossing the curveD
5D1( f ) ~see Fig. 3! from the left ~along the lineD52!, or
from below, one goes continuously from an ECS to
‘‘weakly two-dimensional’’l/2 state. This implies a supe
critical bifurcation. However, when moving from the right
the left along the lineD52, nonlinearl/2 andl states ap-
pear inside the linear stability regions of the ECS and of
modem51, respectively, and coexist with the ECS and w
the modem51, respectively. These findings give eviden
for bistability and subcritical bifurcations. Examples of su
critical l/2- andl states are shown in Figs. 4~c! and 4~d!. We
also observed super- and subcritical strongly peaked peri
CSs forD53.

Are the localized CSs dynamically stable, and can th
develop from small-amplitude initial perturbations around
uniform state? We performed a series of time-dependent
drodynamic simulations withD51, 2, and 3 that gave pos
tive answers to these questions. We will briefly report her
single simulation withD52. The full hydrodynamic equa
tions were solved with the same constitutive relations a
boundary conditions as in the steady-state analysis. Ins
of the shear viscosity in the momentum equation we
counted for a small model friction force2nv/t. An ex-
tended version of the compressible hydro codeVULCAN @15#
was used.

The initial scaled density in this example included
single-mode perturbationn(x,y,t50)5 f 10.1f cos(py) ~in-
dependent ofx!. Figure 6 shows the density evolution.
cluster develops near the elastic wallx50. With time it be-
comes strongly peaked in they direction and approaches th
steady-state profile shown in Fig. 4~c!.

IV. DISCUSSION AND CONCLUSIONS

We predict a spontaneous transition from a laterally u
form clustering state to highly peaked periodic cluster
states in a driven submonolayer granular system. The tra
tion should occur when the aspect ratio of the system is la

FIG. 6. Density evolution forL553104, D52, and f
50.0235. Shown are the density profiles~gray scale, separate fo
each picture! at scaled times 100~a!, 500 ~b!, 1000 ~c!, and 1290
~d!. The maximum~minimum! density at the wallx50 is 0.25
~0.14! ~a!, 0.46 ~0.072! ~b!, 0.66 ~0.040! ~c!, and 0.74~0.036! ~d!.
The gas density at the vibrating wallx51 is close to 431023 for
all profiles.
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enough, and the area fraction of the granulate belongs to
interval (f 1 , f 2). The transition is insensitive to the vibratio
frequency and amplitude, and depends only weakly on
type of driving wall~under the conditions delineated above!.
An important selection issue~what is the wavelength of the
resulting pattern in an infinite, or long enough, strip?! is yet
unresolved. We expect that selection will occur via compe
tion between clusters for material, and their coarseni
Overall, our results put this simple system in the list
pattern-forming systems out of equilibrium@11#.

The symmetry-breaking instability predicted in this wo
does not require very special constitutive relations.
checked that it appears already in the dilute limit,n!nc ,
where the constitutive relations are directly derivable~in the
nearly elastic limit! from the Chapman-Enskog expansion
the kinetic theory@16#. Very recent calculations@17# show
that the main features of the instability remain the same
one uses, instead of the constitutive relations of Ref.@6#, the
‘‘standard’’ relations obtained by Jenkins and Richman@5#.
There are some quantitative differences, however, in the
cise locations of the marginal stability curves@17#. There-
fore, the symmetry-breaking instability provides a sensit
test for the accuracy of different constitutive relations. R
cently, a new ‘‘global equation of state’’ in 2D was propos
@18# that uses a more refined interpolation than in Ref.@6#
between the dilute, intermediate, and dense limits, and ag
very well with particle simulations. We expect that when
similar interpolation for the ‘‘global heat conductivity’’ be
comes available, the marginal stability curves will be co
puted with a higher precision.

It should be straightforward to observe the symmet
breaking instability in particle simulations. We hope it w
also be observed in experiment. Note that the aspect ra
used in the previous particle simulations@6,7# and experi-
ment @9# were always lower than the critical values for th
instability, D1

(min) . As a result, the instability was suppress
by granular heat conduction in the lateral direction. In pla
ning the experiment, one should try to minimize the role
the rolling/sliding friction@9#, unaccounted for in our mode
The frictional energy losses are proportional toT1/2, while
the collisional energy losses are proportional toT3/2. There-
fore, one should work with high granular temperatures~that
is, largeAv!.

When 12r 2 is not small, the normal stress differenc
non-Gaussianity in the velocity distribution, and possib
lack of scale separation all become important. The role
these effects in the symmetry-breaking instability should
the subject of further studies.
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